TAJUK 3
|
PENGUKURAN
|
- SINOPSIS
Tajuk ini meliputi idea tentang konsep pengukuran. Selain unit
piawai, instrumen tak konvensional serta unit bukan piawai yang digunakan dalam
pengukuran turut dibincangkan. Konsep pengukuran digunakan dalam banyak aspek kehidupan
kita. Ia adalah kemahiran matematik yang biasa dan dipraktik dalam sains dan kehidupan
seharian. Ini bermakna, pengukuran boleh menjadi satu tajuk yang menarik dan
penting dalam kurikulum matematik sekolah. Oleh itu, murid perlu belajar konsep
dan proses yang berkaitan dengan pengukuran melalui penglibatan aktif daripada
situasi pelbagai amalan. Dalam tajuk ini, tiga jenis ukuran iaitu
panjang, jisim dan isipadu cecair diberi tumpuan.
- HASIL PEMBELAJARAN
§ Memberi definisi
ukuran panjang, jisim dan isipadu cecair.
§ Menyenarai
pengetahuan kandungan pedagogi bagi pengukuran panjang, jisim dan isipadu
cecair.
§ Merancang
aktiviti p&p berkaitan ukuran panjang, jisim dan isipadu cecair.
- Kerangka Tajuk-tajuk
3.1 IDEA INTUITIF
KONSEP MATEMATIK TENTANG UKURAN
Penerokaan
berkaitan pengukuran adalah penting disebabkan ianya adalah satu bidang dalam
matematik yang digunakan secara meluas. Sebagai contoh, apabila melakukan
pelbagai aktiviti harian (masa) dan membeli (wang) barang dengan jumlah yang
tertentu (jisim), menentukan jarak daripada rumah ke suatu destinasi (panjang),
dapat disedari bahawa ukuran ada di mana-mana.
Mendapatkan kemahiran berkaitan pengukuran perlu dilakukan secara
praktikal, iaitu pengalaman secara hands-on.
Secara khusus, kemahiran berkaitan pengukuran dapat dikuasai melalui aktiviti berikut.
- Membanding
dua kuantiti secara terus.
- Mengecam
unit bukan piawai dan unit piawai untuk mengukur kuantiti.
- Menganggar
dan mengukur kuantiti dalam unit bukan piawai dan unit piawai.
- Menukar
antara unit-unit piawai pengukuran.
- Melakukan
operasi matematik yang melibatkan ukuran dalam unit piawai.
- Menyelesai
masalah harian yang melibatkan ukuran dalam unit piawai.
Modul ini berfokus kepada hanya
untuk membandingkan dua kuantiti secara terus, mengecam unit bukan piawai dan unit
piawai bagi ukuran, serta menganggar dan melibatkan mengukur kuantiti dalam
unit bukan piawai dan unit piawai.
3.2 PENGETAHUAN KANDUNGAN PEDAGOGI UKURAN PANJANG, JISIM, DAN ISIPADU CECAIR
|
Apakah panjang?
Apakah
jisim?
Apakah
isipadu cecair?
Catat
idea anda.
|
Bahagian ini akan membincangkan tentang pengertian panjang, jisim, dan isipadu cecair; ukuran
menggunakan unit bukan piawai dan unit piawai; dan turutan dalam mengajar
pengukuran.
3.2.1 Panjang
Panjang ialah jarak antara dua titik yang diukur
sepanjang garis lurus. Dua ukuran panjang boleh dibandingkan secara terus
dengan meletakkannya sebelah menyebelah. Panjang boleh dibandingkan secara
tidak langsung dengan membandingkannya dengan panjang ketiga. Perbandingan
ukuran panjang sebenarnya boleh diukur dengan menggunakan alat
pengukur seperti pembaris dan pita pengukur.
Unit bukan piawai bagi ukuran panjang ialah sebarang
ukuran panjang arbitrari yang dijadikan sebagai satu unit. Contohnya: (a) bahagian
badan seperti jengkal, tapak kaki dan panjang lengan; dan (b) objek seperti pen, klip kertas, rod, lidi
dan sebagainya.
Mengikut catatan sejarah, peringkat awal unit ukuran
adalah bahagian anggota badan. Contoh adalah seperti berikut.
- Hasta:
dari siku ke hujung jari hantu.
- Jengkal: dari hujung ibu jari ke hujung jari kelengkeng bagi
jari yang diluaskan pembukaannya.
- Depa: dari hujung jari hantu ke hujung jari hantu bagi tangan
yang satu lagi apabila tangan didepakan.
- Genggam:
lebar tangan (semua jari ditutup), ukurannya dari tepi tapak tangan ke hujung
ibu jari.
- Kaki:
Ukuran yang pada asalnya adalah panjang tapak kaki. Orang Roman telah
membahagikan ukuran ini kepada 12 inci.
Unit piawai bagi ukuran panjang ialah sebarang panjang
yang tetap yang telah diterima di peringkat antarabangsa. Contoh ialah ela,
meter, batu, inci, kilometer.
Unit-unit seperti ela, batu dan inci dikenali sebagai
unit Imperial. Sementara unit meter, kilometer dikenali sebagai unit metrik. Walau
bagaimanapun, kurikulum sekolah di Malaysia hanya menggunakan unit metrik sahaja. Contoh
lain bagi unit metrik panjang ialah milimeter, sentimeter and decimeter.
3.2.2 Jisim
Dalam
sains, terminologi untuk jisim dan berat adalah dua pengertian yang berbeza.
Jisim ialah ukuran jumlah jirim dalam suatu objek manakala berat ialah tindakan
graviti ke atas jisim. Walaubagaimana pun, penggunaan kedua-dua terminologi ini
agak longgar tetapi pada bahasa maksudnya adalah sama. Pada kelazimannya proses
mengukur berat objek merujuk kepada menentukan jisimnya.
Jika
dibandingkan dengan panjang, konsep jisim adalah lebih sukar untuk difahami
kerana jisim tidak boleh dilihat tetapi boleh dipegang dan dirasa. Dengan
kata lain jisim dua objek tidak boleh dibandingkan dengan hanya melihat. Tambahan
jisim objek tidak berkadar terus dengan
saiz. Ketulan besi yang kecil mungkin lebih berat daripada bungkusan besar
kapas. Maka adalah penting untuk memberi kesedaran kepada murid bahawa ‘saiz
objek yang besar tidak semestinya lebih berat daripada objek bersaiz kecil ’.
Unit bukan
piawai jisim ialah sebarang ukuran arbitrari jisim yang digunakan sebagai satu unit.
Contoh objek yang biasa digunakan adalah kekacang, biji getah, klip kertas,
paku tekan, dan batu kelikir.
Unit piawai
jisim adalah sebarang ukuran jisim yang tetap yang telah diterima di peringkat
antarabangsa. Contohnya, kilogram, pound, auns and gram. Unit-unit seperti pound dan auns ialah unit
Imperial. Sementara kilogram dan gram ialah unit metrik.
3.2.3 Isipadu Cecair
Isipadu cecair
ialah jumlah ruang yang diisi dalam
sebuah bekas. Satu ciri cecair yang penting ialah isipadunya tetap tidak berubah walaupun bentuk bekasnya berubah.
Unit bukan
piawai isipadu cecair ialah sebarang ukuran isipadu arbitrari yang digunakan
sebagai satu unit. Contoh bekas yang lazim digunakan untuk mengukur isipadu
cecair ialah sudu, cawan, mangkuk, dan baldi.
Unit piawai
isipadu cecair ialah sebarang isipadu yang tetap dan diterima sebagai piawai di
peringkat antarabangsa. Contohnya liter, gelen, pint, dan kuart. Unit-unit
seperti gelen, pint dan kuart adalah unit Imperial, manakala mililiter dan
liter adalah unit metrik.
3.2.4 Turutan Pengajaran Ukuran
Pengajaran tajuk
ukuran perlu intergrasikan pengalaman harian dengan konsep matematik yang
diperoleh dalam kelas. Pengajaran seharusnya dapat membantu murid membina konsep
dan kemahiran, seterusnya dapat diperluas dan dimantapkan semakin mereka
matang.
Walau pun
pengertian panjang, jisim dan isipadu cecair adalah berbeza antara satu dengan lain
tetapi pada asasnya turutan pengajaran adalah sama. Secara keseluruhan, murid
belajar konsep ukuran melalui turutan berikut.
- Mengamati
dan mengenal pasti atribut panjang, jisim dan isipadu cecair melalui
perbandingan secara langsung dan tidak langsung.
- Membina
konsep unit ukuran melalui penggunaan secara langsung unit bukan piawai
diikuti unit piawai.
- Menyatukan
konsep unit ukuran melalui penggunaan instrumen pengukuran.
- Membentuk
hubungan antara unit-unit piawai bagi ukuran.
- Melakukan
operasi aritmetik dengan melibatkan unit piawai bagi panjang, jisim dan
isipadu cecair.
- Menyelesaikan
masalah harian melibatkan unit piawai bagi panjang, jisim dan isipadu
cecair.
Pada
peringkat permulaan, aktiviti yang melibatkan perbandingan secara langsung tentang
panjang, jisim dan isipadu cecair dapat membantu murid memahami maksud setiap
atribut (panjang, jisim, isipadu). Namun murid perlu di beri kesedaran bahawa kadangkala
perbandingan secara langsung tidak boleh
dilakukan. Misalnya membandingkan ketinggian dua pohon pokok, yang berkemungkinan
memerlukan pokok ditebang. Justeru, aktiviti yang melibatkan perbandingan tidak
langsung akan membantu murid membangunkan idea unit sebagai titik rujukan,
dalam membandingkan dua kuantiti.
Membangunkan konsep
unit ukuran dalam kalangan murid boleh dimulakan melalui penggunaan unit bukan piawai. Idea ini
kemudian dikembangkan kepada penggunaan unit piawai. Bagi kedua-dua unit piawai
dan bukan piawai, murid biasanya belajar mengikut turutan berikut.
- Mengecam
unit ukuran
- Menganggar
menggunakan unit ukuran
- Mengukur
menggunakan unit ukuran
Pengangaran
menggunakan unit ukuran adalah proses penting untuk dilalui kerana penganggaran dapat menggalakkan murid
berfikir dan dapat membantu mereka untuk
memperoleh ‘kesedaran ukuran’. Adalah penting supaya murid digalakkan
untuk membuat anggaran terlebih dahulu sebelum membuat sebarang ukuran. Semasa mengguna
instrumen piawai apabila mengukur panjang, jisim dan isipadu cecair, kemahiran
membaca skala unit ukuran perlu diberi penekanan. Di samping penggunaan
instrumen konvensional untuk mengukur, murid juga perlu diberi peluang untuk
membina alat ukur sendiri.
Mengetahui
unit ukuran dalam metrik adalah penting. Pemahaman tentang hubungan antara unit
piawai ukuran seperti 1 meter (m) bersamaan 100 sentimeter (cm), 1 sentimeter
bersamaan 10 milimeter (mm), seterusnya 1 meter bersamaan 1000 milimeter juga
tidak boleh di kesampingkan. Latihan penukaran antara unit piawai dapat
membantu murid untuk memperoleh kecekapan khususnya apabila menyelesaikan masalah matematik.
3.4 AKTIVITI BERKAITAN PENGUKURAN
Aktiviti 1:
Penganggaran dan pengukuran panjang dalam unit bukan piawai
Hasil
Pembelajaran: Menganggar dan mengukur panjang dengan unit bukan
piawai.
Bahan: Pen, wang
syiling.
Prosedur:
- Unit bukan piawai, seperti pen
atau wang syiling diperkenalkan.
- Dalam kumpulan kecil pelajar menganggar
panjang meja mereka dengan unit bukan
piawai.
- Pelajar menyemak anggaran
dengan mengukur panjang meja dengan unit bukan piawai.
- Bincang idea pengukuran dan
penggunaan unit bukan piawai untuk mengukur panjang meja.
- Bincang masalah penggunaan unit
bukan piawai dan keperluan unit
piawai.
Ulasan:
Aktiviti ini
boleh diulang untuk tajuk jisim dan isipadu cecair. Sebagai contoh untuk menganggar dan mengukur jisim
buku boleh dengan menggunakan batu kelikir sebagai unit bukan piawai. Isipadu
cecair pula, dengan menganggar dan mengukur jumlah air untuk memenuhi cawan,
dengan menggunakan sudu sebagai unit bukan piawai.
Aktiviti 2: Mengenal pasti unit meter
Hasil pembelajaran: Mengenal pasti unit meter.
Bahan: Pembaris meter
Prosedur:
- Minta
pelajar menganggar dan tunjukkan panjang satu meter dengan kedua-dua
tangan.
- Semak
anggaran pelajar dengan menggunakan pembaris meter.
- Dalam
kumpulan kecil, cari barang-barang dalam kelas yang panjangnya anggaran satu meter dengan menggunakan
pembaris meter.
- Kongsi
dapatan dengan rakan-rakan.
- Pelajar
menganggar berapa banyak jumlah tapak kaki mereka yang menyamai panjang
satu meter seperti rajah di bawah.
1 meter
(**pijak
kertas sebak supaya dapat meninggalkan bekas tapak kaki seperti di atas)
- Semak anggaran yang dibuat dengan
bantuan pembaris meter.
- Bincangkan soalan berikut:
-
Adakah tapak kaki anda panjangnya tepat 1 meter?Jika
tidak apakah anda lakukan.
-
Dalam kumpulan anda siapakah yang mempunyai tapak kaki
terpanjang? Kenapa?
-
Dalam kumpulan anda siapakah yang mempunyai tapak kaki
terpendek? Kenapa?
Aktiviti 3: Lompat lurus
Hasil pembelajaran: Menganggar dan mengukur panjang dalam
sentimeter.
Bahan: Pembaris dalam skala sentimeter
Prosedur:
(Aktiviti
ini boleh dilakukan di luar bilik)
- Pelajar
menganggar jarak yang boleh dilompat dengan badan lurus (tanpa
membengkokkan
lutut).
- Buat
lompatan dan ukur jarak lompatan dalam unit sentimeter.
- Bincangkan
soalan berikut:
-
Siapakah
yang dapat melompat dalam jarak paling jauh?
-
Siapakah
yang melompat dalam jarak paling pendek?
Aktiviti 4: Saiz dan Jisim Objek
Hasil pembelajaran: - Membandingkan jisim dua objek secara langsung.
- Sedar dengan kenyataan yang saiz yang
besar tidak
semestinya lebih berat.
Bahan: 2 objek dengan jisimnya
jauh berbeza.
2 objek – saiz
yang besar tetapi ringan; saiz yang kecil tetapi lebih berat.
Prosedur:
- Tunjukkan 2 objek yang jisimnya
jauh berbeza kepada pelajar. Tanya
soalan berikut:
•
Lihat kedua-dua objek ini. Mana satu yang anda fikir
lebih berat? Lebih ringan?
•
Bagaimana kita ketahui?
•
Apa yang boleh kita katakan tentang saiz dan jisim objek?
[Jangkaan jawapan: Objek besar
lebih berat daripada objek kecil.]
- Ulangi
prosedur (i) dengan dua objek lain yang berbeza saiz iaitu objek yang bersaiz
besar lebih ringan daripada objek bersaiz kecil.
[Jangkaan
jawapan: Jisim objek tidak semestinya bergantung kepada saiz objek. Objek besar
mungkin lebih ringan daripada objek kecil.]
Aktiviti 5: Membandingkan Berat
dengan Penimbang Ringkas
Hasil Pembelajaran: - Membandingkan jisim dua objek dengan menggunakan
penimbang ringkas.
- Menyusun
objek daripada yang ringan kepada objek
yang semakin berat atau sebaliknya.
Bahan: satu penyangkut baju, 2 kotak kecil, benang,
gunting/pisau,
syiling yang berbeza nilai.
Prosedur:
- Gunting
dan bentukkan kedua-dua kotak kecil untuk membentuk dua bakul kertas.
- Guna
benang untuk membuat gelungan ke atas ke dua-dua bakul, dan gantungkannya
kepada penyangkut baju untuk membentuk penimbang ringkas.
- Dalam
kumpulan yang kecil, bandingkan jisim sebarang dua syilling yang berbeza nilai berdasarkan lembaran
aktiviti berikut.
Lembaran
Aktiviti (Aktiviti 5)
-
Teka
dan semak dengan penimbang ringkas.
-
Teka
dan semak dengan penimbang ringkas.
-
Teka
dan semak dengan penimbang ringkas.
|
Aktiviti 6: Menimbang dengan Unit
Bukan Piawai
Hasil Pembelajaran: Menganggar dan menimbang jisim objek dengan
menggunakan unit bukan piawai.
Bahan: penimbang ringkas, objek kecil dan serupa sebagai unit
bukan piawai
(misalnya klip kertas, biji saga,
kekacang), beberapa objek kecil.
Prosedur:
- Bagi
suatu objek kecil yang dipilih, buat anggaran bagi jisimnya. Kemudian
timbang objek itu menggunakan ukuran unit bukan piawai.
§ “Cuba teka:
berapakah bilangan klip kertas yang sama berat dengan sebatang pen.
Gunakan penimbang ringkas untuk menyemak tekaan”.
§ “Cuba teka: berapakah bilangan biji saga yang sama berat
dengan sebatan pen. Guna penimbang ringkas untuk menyemak tekaan”
ii. Bincang idea penggunaan unit
bukan piawai bagi mengukur jisim.
|
|
|
Cari maklumat tentang ukuran.
Laman sesawang berikut boleh dirujuk.
|
|
Blitzer, R. (2003). Thinking mathematically. 2nd Ed. Upper
Saddle River, New Jersey: Prentice-Hall.
Booker, G., Boon, D., Briggs, J., Davey, G. (1998). Teaching primary mathematics. 2nd Ed. Sydney: Longman.
Bitter, G., Hartfield, M., Edward,
N.T. (1989). Mathematics method for the
elementary and middle school: A comprehensive approach. Boston: Allyn and
Bacon.
|
No comments:
Post a Comment